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SUMMARY

This is the first of two volumes dealing with.the predictfon
of the dynamic thermal behavior of compact heat exchangers. This
volume contains a presentation of the analytical methods derived
for calculating the transient performance. The second volume provides
a complete description of the digital-computer program (Program
KRONOS) de;eloped on the basis of these methods.

~ Models representing the transient heat-transfer processes
occurring in compact heat exchangers of the plate~fin variety have
been developed for éingTe—phase and condensing fluids. Based on the
assumed heat-transfer models, the differential eguations governing
the transient thermal performance have been derived for parallei-flow,
counterflow, and multipass-crossflow configurations. An iterative
finite-difference procedure has bheen developed for the solution of
these governing equations. This procedure can be used to compute
the variation of ocutlet conditions with time for esch fluid in a
given exchanger for specified inttial tempefature distributions and
prescribed variations in intet conditions and flow rate. The over-
all method developed for analyzing the transient behavior has proved
quite effective in treating the types of compact heat exchangers

most often encountered in aerospace applications.



INTRODUCY | ON

Backaround

A compact heat exchanger is seldom considered as a separate
and distinct unit, but is instead always an integral part of a
larger system. As such, it is often an important factor in determining
“the performance of the over-all system, !n many aerospace applications,
it is necessary to investigate the dynamic behavior of systems con-
taining one or more heat exchangers where the characteristics of the
heat exchangers significantly affect the over-all transient response
to changes in the operating variables. In these instances, a reliable
method of predicting the performance of a heat exchanger under
transient conditions is required. '

Models representing the transient heat-transfer processes
oceurring in compact heat exchangers of the.piéte-fin variety have
been developed for two different catégories of working fluids--common
single-phase fluids and condensing fluids; the latter categery consists
of both single-component fluids and two—combbnent fluids (for
example, humid air) in which only the tess volatile component con-
denses. No attempt has been made to consider two-phase boiling fluids,
since this would introduce more complication than appears worthwhile -
at the present time in view of the approximate nature of the boiling
heat~transfer data available. The models developed inciude the
effect of the thermal capacitance of the side walls, which make up
the outer shell separating the heat-exchanger core-From the environ-
ment (see sketches included in the Nomenclature), on the transient re-
sponse. This effect can be important, although it is wsually
negiected in more approximate treatments of the dynamic behavior of
heat exchangers. _ |

_ The differential equations governing the transient thermal

performance have been derivéd, on the basis of the assumed heat-
transfer models, far the heat-exchanger configurarions most often

encountered in aerospace systems; that is, paraliel-flow, counterflow,



and multipasé—crossf?ow,arrangements of plate-fin matrices (heatf
transfer surfaces). A procedure for solving the governing differential
equations has been developed and incorpourated into a digital-computer
program (Program KRONOS} to Facilitate the calculations involved in
determining the transient thermal perforimance of & specified heat-
exchanger confiquration. The program can be used to calculate the
variations of pressure drop and outlet conditions with time for

giQen initial conditions and prescribed tﬁme variations in inlet
temperature (and absolute humidity or vapor quality for a condensing
fluid) and flow rate of both streams. The initial conditions are

- defined as the temperature (and vapor quality for a single-component
~condensing fluid) distributions in the exchanger immediately prior

to the initiation of the transient{. These can correspond to either

a start-up or a steady-state condition.

Method of Attack . S

A Fairdy complete description and literature review of the
currently avaiiable methods of heat-exchanger transient analysis
are given in Chapter VI and Apendix IV of Reference 1. Closed-
form solutions of the transient equations for parallel-flow and counter-
flow exchangers are presented in the literature. These solutions
are quite complicated and difficult to use for practical calculations
despite the fact that they involve a variety of approximations
(such as, assuming constant fluid properties and heat-transfer co-
efficients) in order to obtain the closed-form relations. There are
no methods available for treating multipass-crossflow exchangers.
The few results reported in the literature for single-pass crossflow
are for the most part confined to a fairly narrow range of conditions.
The majority of these procedures for any type of flow configuration
are limited to cases where there is a step change in the inlet
temperature or flow rate of one of the fluids in the exchanger.
Since both the temperature and flow rate can change simultaneously,

the procedurés as they currently stand would have to be modified,



further increasing their compiexfty.

The analytical procedure chosen here for the calcd]ation
of the transient performance basically corsists of & direct numerical
solution of the governing differential equations for the types 0f 
working fluids and Tlow arrangements described previously. The
approach used involves expressing the partiatl derivétives with
respect to time in finite-difference form in.the differential equations
representing the heat-transfer proﬁesses occurring at any time ( & ).
For the cate of single-phase fluids, this leads to & set of differential
equations in which the only derivatives are those of the fluid
temperatures with respect to flow length on both sides. By sub-
stituticn, the number of equations in the set is reduced to two,
ore for each side of the exchanger. The two final working equations
contain as the only independent variables: the spatial derivatives
of the fluid temperatures, the Toﬁa? fluid temperatures at the
current time { ¢ ) and at the preceding time (&@=0-A8 ), ard
the local metal temperatures (of the‘separaﬁjng wall and side walls)
at the preceding time.

As part of the prcdlem ctatement fer any part|cular case,
the temperature distributions throughout the exchanger at the start
of the transient, &=0O , are either given (start-up initial
conditicns) or are calculated frem specified informetion (steady-
state initial conditions). |In addition, the inlet temperature of
each fluid is prescribed as a funct}on of time (bcundary conditions}.
With this informatfon, the twe workina eguaticns are solved simul-

“tanecusly to cbtain tre distritutions of fioid terperature at zach
value of tire (| & )} dszived. Tris is aciomp:isheo py integeating
numarically the differe.tia. eguetics r2'a%<C (o gal” fiuid, Trne
integration for each fluid is parformed with respest to distance
aleng Ttz flow lergth frem the intet fc the cuziset. The soliuticn
procediure fer each time & is iterative, dise to the selécted form
of the equaticns and the desirabilizy of ailcwirg the fluid properties

ard heat-transfer coefficients tc vary with tespsrature. OGnce the



fluid-teﬁperature distributions at time & have been obtained, the
corresponding metal temperatureé are computed in a strafghtforward
fashion using the pertinent eguations from the original set. This
prOsedure is carrted out for each desired value of & , starting
at H=0 and proceeding in a stepwise manner in increments of
AD  until the desired time Interval has elapsed. The method
used in cases where one of the fluids is condensing is essentially

the same as described here with minor variations in detail.

Report Arrangement

This report corsists of two volumes. This first volume
cantains a presentation and discussion of the analytical methods
and procedures on which the computer program is based. Voiume H
- provides a complete description of the computer progran, Program
KRONOS. '

The next section of this voiume contains a presentation of
the differential eguations governing the transient heat-transfer
processes. This is followed by a section in which the procedure
for solving the governing equations and computing the transient
performance i$ described. The last section of the main body contains
a number of conclusions and recommendations related to the work
described in this report. Finally, the pertinent details related

to the derivations of the governing equations and solutlon procedure

are presented in several appendices.

[}



GOVERNIENG EQUATIONS

This section of the report discﬁsses the differential
equations governing the transient heat-transfer processes occurring
in compact heat exchangers of the type described in the previous
section. The discussion begins with a presentation of the lfmiting
azsumptions made in deriving the equations, This is followed by a
‘descriptioh of the manner in which the heat exchanger is modeled
for purposes of analysis. Next, the governing equations are presented
for the various flow arrangements and fluid types considered. Finaily,
the initial and boundary cenditions which must be specified in order

to solve the system of equations are presented and discussed.

Limiting Assumptions

The derivations of the relations‘prgsented here involve a
number of simplifying assumptions made in order to obtain a system
of eqﬁatiﬁhi'wﬁ?ch can be solved in a practicail and efficient manner.
The major assumptions are listed as follows:

1. The heat exchanger is adiabatic. This implies that the
exchanger is thermally insulated from the outside
surroundings and all of the heat transfer occurring takes

e place within its boundaries.

2. Llongitudinal conduction is negligible in both the

e

erem i e £ o

fiuids and the exchanger structure.
3. There is no scale deposition on any of the wails and
the wall resistances themselves are negligibie compared
to the convestive heat-transfer resistances.
L. The fluid tempefature within each passage is constant
in the nonfiow directions.
5. The temperatures vary only in the flow dfrections.
This means that, for parallel-flow and counterflow
~ arrangements, the temperatures are functions 6f a single
spatial coordinate { X ) and, for multipass crossflow,

they are functions of the two spatial coordinates of



the flow plane ( X and L ¥,
There is no lateral mixing in either of the two fluids.

The pressure of a condensing fluid is constant throughout

the exchanger. This does not affect the accuracy of

the relations to any great extent, since for @ condensing

fluid the pressure drop due to friction is somewhat

compensated for by the pressurc rise due to the density
change associated with the process of condensation.

if condensation occurs, there is no accumulation of

moisture in the heat exchanger; that is, the total

mass flow rate leaving the exchanger is equal to

that entering it at any point in time.

A number of additional assumptions are made in deriving

the relations for a two-component fluid in which the less volatile

component condenses (wet gas}):

9.

10.
1.

12.

Liquid-vapor phase equilibrium exists at each point

in the exchanger where liquid exists. This means that
at ény positicn in the exchanger where the fluid temper-
ature is below the dew point, the fluid is saturated, such
that the enthalpy and absolute humidity of the stream
are both functions of temperature only.

All of the condensation occurs on the walls.

The heat capacity of the liquid film on the walls is
negligible compared to the heat capacity of the walls
themselves. 7

The heat-transfer coefficient, " h , is the same as

would be obtained for a single-phase fluid.

Representation of iHeat Exchanger

For purposes of transient analysis, a heat exchanger can

be considered to consist of a number of general differential ele~

ments such as shown schematically in the sketch on the following page.

-
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In all cases, one of the fluids (designated.arbitrarily
as the s f!ﬁid)'muét be single-phase throughout. The other fluid
in the exchanger (designated as the r flﬁid) can be single-phase
throughout, a single-component condensing fluid, or a two-component
fluid from which the less volatile bbmponent is condensing (wet gas).
For multipass-crossflow configurations, the s fluid must be the one
which is turned between passes. This eliminates the possibility of '
turning the two-phase fluid, if there is one. 0One reason for this
restriction is that there are no methods available for calculating
the pressure drop associated with turning a two-phase fluid. Another
and more important reason is that the turnipg may cause flow dis-
tortions due to the centrifuging of the ligquid component which
cannot be accounted for.adequately in the analysis. _

in the sketch of the differential element, the quantities,
UVr and VVS , are the inventories of the two fluids in the
heat exchanger, vj:/Q\/vokJ , where ,© is the local fluid

density and \/VCﬂd is the total void volume on one side of the



e

heat exchanger. The terms Cw s ES\N,\" ‘ , and E-:,w,s

are the heat capacitances of the walls, each defined as the product
of the specific heat and mass of the metal!. The expressions for
calculating Vygid and Ef are presented in Appendix | along
w?th.the relations for computing other peftinent gecmetric properties
of _the heat-exchanger core. The variab1e, Uy , represents the
‘total thermal conductance for heat transfer between each fluid and
‘the metal surfaces over which it flows; for exémple, UTTrETh%rhrAr is
the conductence for heat transfer between the r fluid and the
Separating wall and the fins on the r side attached to it. The
conductances for each fiuid are functions of the heat-transfer

- coefficient, surface area, and surface efficiency corresponding

to that fluid. The procedures and relations .involved in determining

these guantities for the various types of fluids are discussed in

Appendix 1.

Transient Differential Egquations

The equations are presented below for the three different
cases corresponding to the different types of fluids. A set of
five simultaneous differential equations is obtained.for each case.
These equations are derived by taking an energy balance for. each
component of the general differential element represented in the
preceding sketch. For all flow arrangements, the flow direction of
the r fluid is along the positive X direction of the flow plane
(see sketches included with the Nomenclature). The flow direction
of the s fluid is along the.positive ¥ direction for parallel flow,
along the negative x direction for counterflow, and along the positive

y direction for multipass crossflow.
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anq!e-—Phase Fluids on Both Sides

An energy balance on the r fluid in the element gives the

" following equation for all flow arrangements,

/ w T
W c 3Ty dxdy = =[5 Cpy ol
L‘XLY £ aQ . LY ’ 'dX

UT Usr surr | ;
—— L - "'T" d Cl
+ LXL,)(TW T,)dxdy-}- s (‘,w ,) xdy

(1)

A similar energy balance on the s fluid for parallel-flow and

counterflow arrangments gives,

W, 3%

TxLy “PS| 38

WS
dx c[}f" -I? ax dey

 + LL-IXLS))( )c’xdy 4 —L%'u",_%‘ (Tsw,s“rs) Ixdy

o (2)
‘where the upper sign is for parallel flow and the lower is for

counterflow. The energy balance on the s fluid for multipass

crossflow gives,

W ot . Ty
oty 5 T 3,

+ L—U;—-\;’)(T T)dxdv—%- B%)(Tsw}s“'rs)dx‘!}’

(3)
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Three additional equations can be written for all flow
arrangements from an energy balance on the separating wall and the

two side walls:

Co a-{_ U'T,‘f — Ur = .
e e L ety e R

(W)
ng)v E)Tsw,\- - Ur,sw,v -
(5)
é.-s\‘g'lsl‘ 3 SW.S L UT: SWJQ) __
Ilatlod dyd e 2 T~ Tew, s dxd
R T v e
(8}

The preceding relations can be simplified to give the following

set of five differential equations:

(Mc"')aa (w,cp,,)a L+ U-,-,.(T -T, )+ UTswV(Tswv T)
| o | »
Wscp:s.)%%:-wscﬁg a;g L+ Urs TW—T)ri-UTsws(Tsws—‘rs)
(8)
c., %gv = Ury (Ty=Tw) 4 Yr,s (Ts - Tw)
| (9)
Ceur asg" - Ug, sy (Ty = Tomyr) "

(10)



= A Tsy, s
Csw,s 30 = U'i“J sw,S (TS“TSW,S)

Q)

where for parallel flow,

3

Ls

X
Ly

H o

for counterflow

(12)

(13)

and for multipass crossflow,
E=vy

(14)
This is the final system of differential equations which must be

solved simultaneously to compute the transient performance of the
heat exchanger. '

Single-tonponent Condensing Fluid on r Side

fFor this case, an additional quantity, the vapor quality

distributions of the condensing r fluid at any time will be of the
form shown in the sketch on the following page.

, must be considered. The idealized temperature and quality
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‘o general, as can be teen from the above sketch, the heat excharger
involves thres regions~-two single-phase regions, where the r fluid

is either 2 superheated vapor or a subcooled }iquid; ard one two-phase
condensing region, where the r fluid is a mixture of saturated vapor
ard liquid. The equations which pertain and must be solved at any

point depend on whether the region in which the poirt is located



e

is single-phase or two-phase.
The only equation which is affected by the fact that the
r fluid is condensing is the one obtained from an energy balance

on this fluid. This equation can be written in general terms. as,

wo Y3Hr ey oM, Ur\ o o
Me 1270 dedy= (L; hxdxa\/&'t}ﬁﬁw"n}ax%y

Exly] 26
U, sw, .
~Tp ) d xd :
+ LXL ( s b 'r) 7 . (}5)
~where P4y is the enthalpy per unit mass of the r fluid.

In each of the two single~phase regions, the vapor qual{ty
is constant and equal to either 1.0 of 6.0, depending on whether the
fluid temperature is above (superheated vapor) or below (subcooled
liquid) the saturation temperature, .'sat . The'enthalpy of the r

fluid in these regions can be expressed as;

H, = CRPT}.

where CR:P is the specific heat corresponding toreither vapor

or liguid. As would be expected, Equation 15 reduces to the same

expregsion as that obtaiﬁed for the case of single-phase fluids on

both sides (Egquation 7). Therefore, the set 6f differential equations

which must be solved consists of Equations 7 through 11. | -
in the two-phase region, the temperature of the r fluid is

constant and equal to the saturation temperature. The enthalpy here

can be expressed as
Hrg.h¥3,so_t' Xy r
Substituting this definition of H, - into Equation 15 and simplifying

the resulting expression, gives the differential equaticn governing

the vapor-quality distribution:



A%y Xy '
Mﬂiu} geed r:*Qﬁhﬁgd)baiﬁL*4-Uﬂr(nrfﬁyfuﬂSM”fﬂ%r;ﬁ)
(16)

The set of differential equations which must be solved in the two-

phase region then consists of Equation 16 and Equations 8 through 11

Wet Gas on r Side

For this case, the r fluid is considered to consist of two
components--a noncondensing gés component (which can be a mixture of
gases, for example, air) and a vapbr component which partially condenses
_out of the stream in traversing the heat exchanger. Three of the .
equations obtained by consaderat|on of the d|FfetenLial element are
affected by the fact that the r flutd is a wet gas. Tfhese are the ones
determined from energy balances on the r fluid, the separating wail,
and the side wall in contact with the r fluid. o

The derivations of the pertinent relations for th[s case
are presented and discussed in Appendix Il1. The results of these

derivations are the following differential equations:

.% -

W“JJYCFI" BQ -(WJJCF: )“%—"LL +Urr( Tr)+UT,$“-’;"(Tswjv"Tr‘]
(17)
3w

Y = UT,!'(Tr*Tw) '1"U1‘)5(T.5—-Tw)

- YN 37' '
Nv’w[(h":g:p? W)(W r 5-5 +\3' aBTx Lx)]

(18)
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= AMsur TRy, o SR
Cons 2557 = O (oo 5 [ (o 0 S0 58 0 37 4

(19)

whe. s
Cpfrcpgrt Wy Cpy
Br = Pgy T Sy TRYr
- (20)
and Eh/vv , defined as the fracfién of the total condensation
H
rate occurring on the separating wall, is approximated as,
e — UTJ". IT"—. TW‘
.‘:“.:_“"r.:._.,/!!‘-_j-_»i-;r 2 Tt‘mTw ‘ + UT,sW,F | - Tsw,r
(2

By reason of the assumptions given on pages & through i, the
humidity and derivative of humidity with temperature appearing in
the above expressions are known functions of only the fluid
temperature. Therefore, the independent variables whose values are
to be determined are the same as for the case of a sing]e;phase r
Fluid; that is, Tp , Ty , Ty » Tswr o and Taws - The
set of differential equations which must be solved for these variables

then consists of Equations 17 through 19 and Equations & and 11.

information Required for Scolution of Equations

in order to solve the set of differential equations and
compute the transient performance for any particular case, a variety

of data must be specified. First of all, the physical boundaries
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(dimensions) of the heat exchanger must be specifﬁeﬁ, along with the
thermophysical properties of the two fluids and the geometric properties
of the heat-transfer surfaces and exchenger structure. The remaining
information required involves the specification of two sets of coqditions.

These come under the categories of initial and boundary conditions.

Initial Conditions

These correspond to the distributions of fluid and metal
" temperature throughout the exchanger at the start of the transient
{8=0 ). There is a choice of two initial temperature dis-
tributions corresponding to either a start-up or & steady-state
situation. 7 ,

For the case of start-up, the initial temperature of the
metal throughout the exchanger is constant and equal to the tempefature
prevailing immediately prior to intrbducing the two fiuids. The initial
temperature distribution of each fluid is alsc constant and is taken
as equal to the specified inlet temperature of the fluid at the start
of the transient. The inlet temperatures of both fluids at =0
will usually be specified to be equal to the given metal temperature;
this is equivalent to assuming that the heat exchanger is initially
filled with both fluids and is in thermal equilibrium.

in[tial conditions corresponding to steady-state refer
to a situation where the heat exchanger undergoes & transient change
in operating conditions during steady-state operation. For this
case, the initial steady-state temperature distributions are obtained
by setting equal to zero all of the derivatives with respect to time
in the differential aquations. The resulting set of equaticns is then
solved in the same manner as for the transient catculations. The
distributions calculated in this fashion correspond to the steady-
state conditions prevailing immediately prTor to the initiation of

.the transient.



Baundary Conditions

The information which must be supplied consists of the
iniet conditions and flow rate of each fluid as functions of time. The
fluid inlet conditions which must be specified consist of the temperature
and, for a condensing fluid, vapor quality or absolute humidity. -The
inlet pressure must alsc be specified; however, this guantity is
required to be constant with time. The prescribed variations must
cover the time interval over which the transient performance is to be

determined.
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L 70 'SOLUTION PROCEDURE

The procedures developed for solving the governing aifferential
equations and computing the transient thermal performance are described
in this section. The manner in which the differential cquations
are rearranged to obtain a more convenient form is discussed first.

The method used to solve for the temperature distributions at any
given time, & , is then presented. Finally, the over-all procedure

is described in general terms.

Finite- Difference Representation of Equations

An examination of the géverning differential equations shows
that they are hyperbolic. Equations of this type can be solved by
a finite-difference scheme either based on the method of characteristics
{Ref 2) or based on taking incremental steps along the time scale
{ & .) and in the physical flow plane ( X, ¥ ). A procedure
based on the method of characteristics could be used to obtain
sceurate resuiis for the temperature distributions at all values
of time. However, with this method there is no freedom in choosing
the finite-difference grid to be used in performing the calculations,
since the relative spacing of the points is fixed by the characteristics
of the particular problem being considered. As a result, this procedure
is somewhat unwieldy and difficult to implement. The aiternativé
approach of taking finite steps in £ , X , and ¥ is somewhat
less accurate than the mathod of characteristics at small vq]ues of time;
that.is, values on the order of the dwell time of either of the two
fluids.. However, this approach is considerably more flexible than the
method of characteristics and can be applied in a straightforward
" manner. In addition, by appropriately choosing the form in which the
equations are written for purposes of solution, a procedure can
be obtained which will provide acceptable accuracy in virtually all
cases. For these reasons, a Finite-difference procedure based on

the time scale and the physical flow plane has been selected as being
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the most practical for .the application being considered.

The first step in obtaining the equations in a form suitable
for numerical solution is to replace all of the derivatives with
respect to time by their finite-difference approximations. The time
derivative of temperature (or quality) in each equation is then written

in the following form,

AT T (| ._ ,
30 - Blgt '"(Aé?) (T=7")

o (22)
where 7! denotes the value at the beginning of the time step, &' '
and T denotes the value at the current time, =& '+ A&

The remainder of each equation can be written in terms of the values
at the previous time ( &' } or the current time { & ).

for example, with the former approach (cailed the "explicit! method

in this report) Equation 7 becomes,

[ON
L. '

T ' ;
(EERE) (o= =i S b U (T U (Towr =)

(23)
and with the latter approach {called the "implicit! method) it becomes

dTr
9 x

(wrcm

AL

Ly + UT?(TW'TY)+ U, SW,"(TSMV‘TA
\ ,

(24)
These are termed the explicit and implicit methods, respectively,
since they correspond roughly to the methods of the same name used in
expressing the governing equations for the analogous case of
transient conduction. {Ref 3}.°' | | | ‘
“ “The implicit method has been selected as the more practical

approach, since it allows considerable latitude in choosing the size
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of the time siep réquifed to achieve atééptéble’éCCUrécy. "However,

in order to obtain sufficiently accurate soclutions of the transient
performance, it is still advisable to_b0und'the value of the time increment
used in carrying out the cailcutations. This is done by computing
approximate minimum and maximum acceptable values of NG (dlézﬁnand
ékénnax's respective}y) and insuring fhat the actual value used for

the calculations at any time . is between these limits. The
suggested procedures for determining the values of Af,;n and A‘gmax’ are
presented and discussed in Appendix V. |In actual fact, it is not
strictly necessary to adhere rigidly to these limits. Experience

has shown that any reasonable value of AZ will yield sufficiently
accurate results, particularly in comparison to the accuracy of the
empirical data available for the calculation of the heat-transfer

coefficients.,

Reduced Equations

As was described previously the calculation of the transient
pefformance for any particular case involves the simultaneous solution
of a set of five differential eqqations; In order to simplify the
solution procedure it is convenient to reduce ths number of equations
to two, one related to each of tne two fluids. This is accomplished
by replacing each derivative with respect to time by its finite-
difference approximation and then algebraically eliminating the values
of the metal temperatures at the current time ( Tw , Téuar , and
Tew, s ) from the equations by substitution. .

The rather lengthy algebraic procedure invoivéd in reducing
the system of equations is described in Appendix Y. The equations
which are obtained as a result of these manipulations are as follows.

The expression related to the s fluid is,

dTs
PE

+ T, = Qe+ Qs Tr

|

(25)



The corresponding relation for the r fluid is,

2 T
A x

o - (26)
‘,",i“.n"' cuses where the r fluid is single phase or a wet gas. 1§ the '
r f.luid is a sing\&*component condensing fluid, Equation 26 does not
apply in the two-phase region, since there the tempera'ture is known
and equal to the caturation temperature (Tsax ). In the two-phase
region the vapor quality replaces the temperature of the r fluid

" 24 the unknown quantity, and the foHowlng expression is used IﬂStE’.od

of Equation 26:

3 Xy, ¥ : - .
LD e Ppp Xy T QTF’I + QTez Ts
ax !
| B
(27)
The coefficients in the above expression'( Ps s Rey » RQez Pe

..er , Qs Pre Qrpy and QTpz ) consist of combinations of
fluid properties and flow rates, heat-transfer conductances, geometric
properties, metal capacitances, and the value of the time incremer‘\t.
in addition the coefficients, Qg Qe and QTpi contain
the known values of the metal and Fluid temperatures {and quality in
the two-phase region) at the beginning of the time step, 9'
Expressions for all of these coefficients are derived and presented in
Appendix V. | |
The determination of the fluid temperature (and qﬁality)
distributions at any time & now involves the simultaneous solution
of a pair of differential equations, Equations 25 and 26 or 25 and 27.
This is accomplished by integrating consecutively the relation for
each fluid with respect to distance along its fiow length from the

known conditions at its inlet to the outlet. The iterative solution



procedure used is described subsequently in this section. Once the
fluid temperature (and quality) distributions at time & have been’
determined, the corresponding metal temperature distributions arc

computed with the following reduced equations,

- :. ] aT]'
(28)
. % / _ T '

Tsw,t = Fowri Tr + Fowrz Tow,v + Fsw, 6L Tp' = Fau,x, %——P

b X
(29)

/
Tow,s = Fawst Ts + Fswsz Tsw, s

(30)

These expressions and the relations for the coefficients are alca

presented in Appendix V.

Integration of Reduced Differential Egquatiocns

There are a variety of schemes available for numerically
integrating the differential equation forleach of the two fluids. _
" The procedure chosen is semi*analytical in nature. In performing the
integration for each fluid, the procedure requires estimating the
temperature distribution of the fluid on the other side, and making
some estimate of the spatial variation (between calculation stations
equally spaced along the flow length) of this temperature and the

coefficients.

Calculation Sections

For the purpose of carrying out the numerical integration
of the differential equations, the heat exchanger is considered to be
divided into a number of calculation sections. The manner in which
this division is performed for parallel-flow and counterflow con-

figuraticns is illustrated in Figure 1. In these configurations

23
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all properties are assumed to be constant in the transverse { ¥ '}

direction. In the following descriptions the subscript, " Lo,
refers to properties either at station L or in section L (see

Fig 1). For example, 1})L is the temperature of the r fluid at
station L ?ini is the average value of the coefficient, P} s

‘in section L . For a multipass~crossfliow configuration, the division
- of the exchanger is as illustrated in Figure 2 for the specific case

of a three-pass arrangement. In each section all properties are assumed
to be constant in the direction transverse 'to the flow direction;

that is, along the Ay face of the section for the r fluid and along

the A4Ax face for the s fluid. The subscripts, " { " and"'j L

'refer to either stations or sections. For example, the temperature
1];%} is the temperature of the r fluid at station L along

thé Ay face of section i,J ; similarly, for the s f]uid,'Tsagj'
is the temperature at station j along the Ay face of sectfcn
LJJ . Also, as was the case for parallel flow and counterfiow,
Fﬁ}%j is the average value cof the coefficient Pr in sectton

i,j .

The sizes of the spatial increments, AX and Ay , used
affect the accuracy of the sclutions obtained. Experience has shown,
howéver, that the use of a reasdnable number of sections (say;fﬂxrlo
for parallel flow or counterflow and Nx_';:>=5; N}’,P =10 for
crossflow) yields results which are sufficiently accurate for most

applications.

Intearated Eguations

The approach involved in obtaining the integfated forms of
the reduced differential equations is illustrated here by considering
the relation for the r fluid, Equation 26, for a para]lel-flow or
counterflow configuration. in ihteg}ating this expression over the
general section t (that is, from station L to f4-1 aiong
the flow length), or X to XL-*i it is assumed that the ccef-

ficients Pr and ¢Drg are constant and equal to the average values,
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(31)

A 5}'2 L =TI2‘(Qra,f.+Qra,i+!)-
(32) -
In addition, it is assumed that Q,, and Ts vary linearly with -
distance, '
Q” = aQ + bQ X
T sdydbr X

where the constants, dg , by a-, and BT , are computed
from the values of @y and Tg at stations L and i1

With these assumptions, Equation 26 in the section [ takes the form,

aT - ) .
YL+ P T, TR TRLX
ax y
| | (33)
where the constanfs ;)  and /G(_' are defined as,
d; 2 gt Qye,l T
(3%)

(35}
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Equation 33 is now seen to be a linear differen{ial equation of the
first order and first degree for which the integrating factor is

EE?ML X (pp 40-43 of Ref 4). Applying this factor, fntegrating
between X[ and X/ 45 X{+ 4 X , and substituting for the various

constants yields the final integrated form of Equatioﬁ 26,

P AKX | hfS .z&*‘
Ki | rL
Tyi+1(To)e 77+ I:Q :_+;+Q TsuHE (-e ‘ )]
R ol :',L) | Fr, L v, vz, L B ax _
s oL B A P, &x
g ; Q T e F R ' - !
+E3n,1_'+ raL's, F:FLAX! € e
T o (36)

With calculated values of the coefficients and estimated values of
Te  at all stations, this ekpression can be used to compute the
temperature distribution of the .r fluid starting with the known
condition at the inlet (T}::T}n rat L=] ) and proceeding to the
outtet (LI =Nt/ )y, _ ! |

The same procedure as describéd above is used to obtain the

final integrated forms of Equations 25 and 27:

e par ’P)e—é’gax#— | E? A T j”i | IC"P,M*)]
el = TR S+ %z”ﬁ nAt oot 27\ J

= | —Fﬂ _Ax _?; A 1
""EQ“M-*Q;Z,:@’-E%[}D;LWM(!-Q A )-e_.‘f’f-‘ jj

(37)

where 4 = ( for parallel fiow and ﬁ%EENx+2-£for counterflow and

—

~ A% ' ~Frp LAX

. = R > i = T | TR L

x\a;r;h‘l‘(x\ﬂ".l)e + = l%TP:‘L-i-I*_QTP&‘-T%‘-H E‘g A G"e
PTF;L ' TE{=X .
B 5 AX ~Fpiax
TR L TEe L
+ Y +'q%P?c —! X -& J )"e o 1
F;PL. * N

(33}



Expressions similar to Equations 36 through 38 are obtained for the
case of a crossflow configuration, the only difference being in the

method of subscripting.

lterative Solution Procedure

As was mentioned previocusly, an iterative solution of the
equations is required to determine the temperatufe (and quality)}
distributions at any time & from thé known distributions at the
beginning of the time étep ('8~ A ). The procedure selected for
~performing this iterative solution is called the 'double-sweep"
method. With this method, each iteration invelves two integrations
(or calculation sweeps), one in each of the two general flow directicns
of the exchanger. The major steps of the general procedure are
described briefly below for the specific case of a counterflow con=
figuration in which both fluids are single-phase. The steps in the
procedures for other flow arrangements are essentially the same and can
be inferred easily from the following description:

1. The temperature distributions of both fluids are estimated.
for the calculations at any time & , the initial
estimates are taken as the distributions computed for
the previous time &’ . Subsequent estimates are based
on the results of each iteration, ,

2. The coefficients, B, , @, , Qy» , and 2 ’Qs[’

(252, are evaluated at each calculation station using the
estimated values of temperature.

3. Keeping the estimated temperature distribution of the s

fluid fixed, the temperature distribution of the r fluid
is calculated. This calculation is performed using
Equation 36 to determine the values of Ty at each
station along the flow length, starting with the specified
temperature at the r fluid inlet ( Tth)v ) for time ©

L. Keeping the temperature distribution of the r fluid fixed

ar the values computed in Step 3, the temperature distribution
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of the s fluid is calcu}a;ed{; This calculation is
performe& uéing Equaticn 37 to determine the values
of Tg at each station, starting with the specified
temperature at the s fluid intet ( 71YL < )

for time & . &

5, Steps | through 4 are repeated until the distributions
 calculated in Steps 3 and b are.within a specified tolerance
of the correspending distributions estimated in Step T,

When this condition has been satisfied and converged

fluid temperature distributions have been obtained, the
coefficients in Equations 28 through 30 are evaluated

at each calculation station. These coefficients and
expressions are then used to compuie the metal temperatures,

TW s T%W,V , and TSM{S , at each station.

.

Essentially the same procedure as described above is used for
"cases where the r fluid is condensing., One difference is that the in-
tegration over the section in which condensation starts is performed

in two parts. For the portion of the section upstream of the point

of condensation (that is, from the adja&ent upstream station to the
condensation point) the coefficients are taken.to be constant and

equal to their values at the adjacent upstream calculation station.
Similarly, for the downstream portion of the secticn, the coefficients
are taken to be equal to their values at the adjacent downstréam sta-
tion. This is done because the values of the coefficients in the non-
condensing region differ signficantly from those in the condenting
region (due to the different:heat-transfer mecharisme prevailing),
requiring that the cordersation peint be treated as a discantiniity.
Another necescary variaticn in the procedure it due (o the fact that

the coefficients are relatively strong functicns of the temperature {and
quality) distributions of the condensirg fluid. Therefore, in the iter-
ation procedure, two consecutive calcu]ation.sweeps are made keeping the
s fluid temperatiure distribution fixed instead of one as in the case of
two single~phase fluids, This is done so as to '‘update' the values of
the coefficie~te ir each iteraticn before corpoting the termperatires of
the € fluid. |Ir thic man~er, & ro-e stable appreach te the soluticn

is obtainad.



Genera) Description of Over-All Procedure

The stepwise procedure used to determine the transient
performance over a specffied time interval is based on the methods
previcusly described and is quite straightfarward in nature. First,
the temperature distributions at the start of the transient (initial
conditions at time zero) are determined. Tne magnitude of .the first

time increment, DG , is then chosen and used to define the new

29

time, & . The inlet conditions and flow rates (boundary conditions)'

of both fluids are evaluated at & from the ﬁrescribed variations
of these guantities. The double-sweep method of iteration described
above is then used to determine the new distributions. The pressure
drops of both fluids are calculated iteratively, along with the tem-
perature distributions, using the methods and relations described on
pages 98-99 and 117-120 of Reference 5. This procedure, starting with
the selection of the time increment and determining the transient
performance of the exchanger at the new value of & , is repeated

until the desired time interval has been covered.
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CONCLUSIONS AND RECOMMENDATIONS

Conclusions

Analytical models have been developed which reprasent
single-phase or condensing heat-transfer processes in compact plate-
fin heat exchangers operating under transient conditions. The dif-
ferential equations governing the transieat thermal performance have
been derived on the basis of these models for parallel-flow, counterflow, .
and multipass-crossflow configurations. A finite-difference procedure,
which involves.using the implicit or backward-difference method of
representing the derivatives with respect to time, has been developed
for the simultaneous solution of the governing equations. This
procedure can be used to obtain the temperature distributions in the
exchanger at any time & for given initial conditions and prescribed
variations with time of the inlet conditions and flow rates of both
streams. Although the procedure is iterative in nature, it has proved
quite effective in obtaining sufficiently stable and accurate solutions.
Finally, this has led to the development of a general method of analyzing
the transient behavior of the types of compact heat exchanger most

often encountered in aerospace applications.

Recommendations

Due to the hyperbolic nature of the transient differential
equations (see Appendix 1V), any finite-difference solution procedure
based on the physical flow pTane may not yield accurate resuits for
the temperature distributions &t vaiues of time IesS than the dwell
time of either of the two fluids. However, solutions for the outlet
conditions at all times greater than say twice the dwell time are
sufficiently accurate for all practical applicaticns. iﬁ mast cases,
the response time of each fluid is one or two orders of magnitude
larger than its dwell time. 1f the solution procedure is being used
as an anaiytical tool to investigate the over-all dynamic behavior of

the heat exchanger, the main pointé of interest are the general shapes



of the transient performance curves and‘thé values of the reéponse times:
The minor inaccuracies inherent at small values of time will then be
negligible and will have no significant effect on the results obtained-
However, there may be applicaticns where it is desirable to compute
the detailed temperature distributions throughout the exchanger at
all values of time: for example, in performing a stréss analysis of
a given heat-exchanger configuration to determine whether the transient
thermal stresses are within acceptaﬁlellimits. 1f such aspplications '
are of interest, it is recommended that a new procedure be developed
for the solution of the transient differential equations which would
“satisfy this requirement. This would involve using the method of
characteristics {Ref 2} to determine the detailed temperature dis-
tributions at all values of time within the interval of interest.

In treating heat exchangers in which condensation from a
wet gas occurs, the procedure for determining the transient performance
involves assuming that the heat-transfer coefficient can be evaluated
using experimental date obtained with a single-phase fluid. This
assumption is expacted to be quite reasorable for the vast majority
of cases involving this type of exchanger. However, there is very
Jittle known about the mechanism of condensation from a wet gas and
its effects on the heat- trensfer process. Since this situation
occurs in many aerospace applications, it seems important that basic
information on i;s effects be obtained. Therefore, it is recommended
that an analytical and experimental program be initiated to provide a

better understanding ¢f the prenomenon of condensaticn from a wet gas.
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NOMENCLATURE

Description

‘Heat transfer area

Minimum free flow area

Ratio of fin to total heat-transfer
areda

Heat~-transfer area per unit area
in the flow plane for a matrix

Heat-transfer area of side wall
nzritlzl te parting rlates

Heat-transfer area of side wall
nnrmal to partirs nlotar

Parting-plate thisknéss
Splitter-plate thickness

Plate thickness of side wall
parallel to parting plates

Plate thickness of side wall
normal to parting plates

Plate spacing (distance between
adjecent plates) for a matrix

Total heat capacity of exchanger
core structure

Heat capacity of side wall in
contact with one fluid

Specific heat

Fanning friction factor

Mass velocity (EW/AC )
Acceleration due to gravity

Proportionaligy congtant in Newton's
Law (4. 169x10%) '

39

Units
sg ft

s¢ ft

sq ft

sq ft
ft

ft

ft

Cft

ft

Btu per deg R

. Btu per deg R

Brs pec 'bm ceg R

1bm per hr sq ft

ft per hr2

ft Ybm per ibf bl
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Symbol

>

o

e =

‘Description

Enthalpy per unit mass
Heat transfer coefficient
latent heat (heat of
vaporization) '

Colburn modulus

Thermal conductivity

Flow length: or total heat-
exchanger core dimension

Effective fin length

_ Molecular welght

Number of layers or sandwiches
for a matrix

Number of passes in a multipass

crossfiow exchanger

Rate of condensation for a
wet gas '

Fraction of condensation from a
wet gas occurring on separating
walls and attached fins

Total number of length increments
into which the X dimension {Ly )
of an exchanger is divided

Tota} number of length increments
into which the ¥ dimension per pass
(Ly) of a crossflow exchanger is
divided

Prandtl number ('E.‘"CP/LL/?g )

Pressure

Time~increment parameter defined
in Appendix 1V

Units
Btu per lbm
Btu per hr sq

ft deg R

Btu per lbm

Btu per hr ft
deg R

ft

ft

1bm per lbm-mole

Ibm per hr

1bf per sq ft



'ngmboi"

8 A P

<

/»ﬁhnt

—~—
4

bioid

x 3 5

>

Desgription’ ~

Reynolds number (54-:‘;?G/u ).
Hydraulic radius ('—‘:A(Q_L/A )
an spacing - -

Temperature

Heat-transfer conductance on
ong side

Volume

Ratio of metal yolume to total

" volume between plates for

a matrix

Void volume on one side

Fluid Inventory on one side
Mass flow rate

Coordinate axis of exchanger
Vapor quality (mass-fraction:
vapor) of a single-component
condensing fluid

Coordinate axis of exchanger

Pressure drop

Length increment in X
direction

Length increment In ¥
direction

TJime increment

. Effective fin thickness

Fin efficiency
Heat-transfer surface efFiLien:y
Time

Time at baginning of time wrar

Cft

deg R

Btu per hr deg R

cu ft

"cu ft

1bm
1bm per hr

ft

ft

Ibf per sq ft

ft

i
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Symbol

o

IR

)
4
~.

&

Subscript
ppP

¢

t
tn

Y X

met
mih

NF

Descriplion

bwell time of one Tluid in
heat exchanger (E,vK/yg

‘Dynemic viscosity

)

Distance é!ong flow direction

of s fluid
Density

Ratio of minimum Tree~flow
to total face ares for one

Ratio of minimum free-flow
face area between adjacent

Vapor shear stress

Absolute humidity of a wet

(1bm moisture/lbm dry gas)

Pescription

atrea

side

area to
plates

gas

Value at dew point of wet gas

Gas component of wet gas

Units
lbm per hr ft
ft

Ibm per cu ft

| iLf per sq ft

Station or section in the X direction

Inlet

Station or section in the V¥

for a crossflow configuration

Liquid
Mean
Maxfmum
Metal
Minimum

Nonf low dimension

directicn

-



Subscript

out
v

2]

gat

.85

A
w
X
7

Superscript

0O

Description

Out let

One side or fluld of heat exchanger
Other side or fluid of heat exchanger
Value at saturafea conditions

Side Wall

Vapor

SeparatinQVWaIl

Coordinate axis of exchanger

{oordinate axis of exchanger

Description

Qusntity nondimensionalized by
hydraulic radius

Value at beginning of time

step (@=L-A 8 )
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APPEND LY I

CALCULATION OF GEOMETRIC PROPERTIES

Expressions are presented in this appendix for computing
the major geometric properties of the heat exchangérrwhich are
required for the calculation of the transient performance. - Several
geomctric quantities related to the Reat-transfer matrix (surface)
associated with each fluid appear in these expressions; for example,
the ratios of the total heat-transfer area of oné passage to the -
surface area of one plate ( /\+* ), the minimum free-flow area to
face area between adjacent plates (dﬁnt }, and the metal volume
to total volume between adjacent plates ({(Vp/V)gp# ). The relations
used to compute these and other pertinent gecmetric variables are
derived and presented in Appendix | of Reference 5.for the different

types of plate-fin matrices commonly used.

Void Volumes

The void volume on each side ( Vygoid ) is used in
computing the inventory of each fluid. The expression for computing

the void volume on the r side is,

/
Vyoid,r =0y V.

(-0
where V ~ is the total volume,
V=0LxlyLur
(1-2)
The ratio of minimum free-flow area to total face area for the r s ide,
o';’ , is computed as,
‘ , Tint,rBr Ny
G; =
by

(+-3)



where,

L-.-T = bl" NL,Y """(NLJ;--!)a’gp)rL{’bS NL,S'Jr(ML’s—!)aBP,S—i- ca.

(1~4)

The corresponding relations for the s side are the same as those

‘on the previous page with the ''r'' subscript replaced by ''s'.

Heat-Transfer Areas

* The total heat-transfer area in contact with each fluid
involves two categories--the surface area associated with the side
walls and the surface area associated with the separating wall

and attached fins.

Side Walls

The heat-transfer area of the side walls in contact with
each fluid is calculated in two parts corresponding to the area
associated with the side wall parallei to the parting plates (Z\Ser
and normal to the perting plates ,(Aswﬁ' }. The area ASW,Z simply
consists of half the total surface area of one passage (including the

fins); the expression for the r side is

= :
Aswdr= 7 AnyrLxly

(1-5)
The retation for ﬂghﬁt oh the r side is,
Asw},r = Bsy by NL,r
” (1-6)
where
- ELXLNF
B, = by

(t-7)

)
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The corresponding expressions for the s side are the same except

that the "r'" subscript is replaced by ''s'’.

Separating Wall and Fins

The heat-transfer area on each side is obtained from the

definition of the hydraulic radius. For the r side, the expression

is,
Acr bx ;
A, = ——— ——= A, LxbL
Y rh,r 2 THr—Xx VY
(1-8)
vhere the total minimum free-flow area, Aoy , is computed as,
A, =07 1
er79r buslby
(1-9)

Note that in caleulating this guantity, the area associated with the
side wall parallel to the parting plates is subtracted from the
nominal heat-transfer area for the fluid. o

The expression used to compute the heat-transfer area
on the s side depends on the flow arrangement. For parallel-flow

and counterflow,

) |
AsT -_Z_AH.SLXL)’

(F=10)

(i-11)-



For muyitipass crossflow,

AC.SNPLV f

AsT T —“7 Ay s bxly
| (1-12)
where
_ i by
Acs =% LHF(NP)
(1-13)

Metal Capacitances

The capacitance of the separating walls and attached Tins

is given by the expression.

v

=1 (, 5 .
v L. [ met cﬁme%v”ﬁ r+ pmeicﬁmetvraf)s‘;_pme‘t,i’ ﬁma;?’v-“'“":

i
(1-14)
where
_ A {rv -
Vit = E—[(_ﬁ), b, N, + (N, 1)%,,}
— T int,r
(1-15)
i ) Sy,
vl'a:'r,sz ;T (%,E) N t’S}‘!L,s +(NL,5 \)U‘ng{l
int,s
_(1-16)‘
2a

(t-17)



- The relation for the capacitance of the side wells in contact witi!-w_

the r fluid is,

-~ 1
CowrLxby (Pme.f%) met)swasw,f+ & (fomefcfjrne'{‘}

Ve -
F(T?");n&,rb’”%"'Jr(Mh* }}ﬂsﬁ;"
+(Pme{: 6 ei“)swa":"%t BS‘“]}Y NL}V-&“(N Ly~ ! )aspjr + ‘ﬂ
| (1-18)

The corresponding expression for C.ow,s is the same as Equation
P / qual

I-18 with the '"r'' subscript replaced by ''s'.



APPENDIX 11

CALCULATION OF TOTAL CONDUCTANCES

This appendix presents the relations and procedures used
to determine the values of the total conductances for heat transfer
between each fluid and the metal surfaces with which it is in contact.
First the expressions defining the conductances for a side are defined.
This Is followed by a description of tﬁe procedures for calculating .
the major terms in these expressions, the heat-transfer coefficient
( h ) and fin efficiency { Yzo ).

Definition
e

For heat transfer between either fluid and the separating

wall (including the fins) the conductance is defined as

U= rlehA
(tt=1)

For the side walls in contact with the fluid, the conductance is

given by the relation,

U'ESWE’?OHASsze-}-hASW:{ .
(11-2)

In the above expressions, the term on is the over-all surface
efficiency defined as, ' -
7,=1- (Ag/AY (170,
(11-3)

Heat-Transfer Coefficient

Single-Fhase Fluid or Wet Gas

The procedure for computing the value of ?Z used in



ol

Equatiﬁns'il—l and t1~2 is the same whether the fluid is single-phase
or a condensing wet gas. In evaluating the heat-transfer coefficient,
it is assumed that a table of experimental values of friction factor

( ¥ ) and Colburn modulus ( J ) versus Reynolds number { Re )

is available for the heat-transfer matrix (surface) through which

the fluid flows. In using this table, the local Peynolds number,
4ry G
Re= S
' ‘ ' '- (-l
is computed. A mean value of thé Colburn modulus, Jﬁnq , is then
obtained by interpolation from the table assuming,
M
Jm = an
Re
(t1-5)

where FIQ and @, are constants of interpolation obtained from
the tabulated values of Re, and j . The value of Jnj s
corrected for the effect of temperature-dependent {luid properties

to determine the final value of J . For a gas,

5= g (2)"

(1i-6)
where jlv is the local wall temperature. Similarily, for a liguid.
L4}
.. My
WV Im ( M
(1i-7)

where.}lMIis the viscosity evaluated at -Tva . The exponert, T



AWy

‘s a function of the flow regime and whether the fluid is being
heated or cooted (Refl 5, pp 90-91). When the final corrected
value of J _ has been obtained, the heat-transfer coefficient is
calculated as;

-jCBC:p
h= 2/32

P
(11-8)

Single-Component Condensing Fluid

The procedure used to calculate h  for this case de-
pends on the local state of the fluid. In the superheated-vapor
region {see sketch on page 13 }, the procédureris the same as that
described above for a single—bhase fluid. In the two-phase-region,
the procedure is based on the correlations of Rohsenow, WeBber and
Ling (Ref 6) and is essentially the same as that described on pages
115-117 of Refercnce & and pages 179-180 of Reference 7, the only
exception being that local rather thaﬁ mean values of h are
obtained; this procedure, with XV,:CD , is also used to computs

h in the subcooled-liquid region.

The method of Rohsenow et al. yields values cf the mean
heat~transfer coefficient, hrn ,oner the distance between.the
point where condensation starts to the point being considered, ZZL.
Curves obtsined using thIs'method are presented on Figure 103 of
Reference 7. These show the variation of the nondimensional mean heat-
transfer coefficient, hv:t, versus the nondimensional condensing

. ¢ . . : . .
tength, ETL , énd liguid Reynolds ﬁ:mber,ﬁieii viith nondimensioral

* 3¢ 3 parameter for two values of fiquid Prandt!

Vshear stresy EL
number , szé =1 end F@ezlo. in the finite-difference calcuiations
described in this report, it is more convenient to be able to evaluate
the local condensing heat~transfer coefficient, h . In order to
do this, the plots cf fﬁnf were graphically differentiated td

. . * .
obtain the ccrrespending plots of h . The resulting curves of

A2 ]
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'if% VErSUS Fz&é{ are approximately linezar on a log-log plot and
are shown on Figures 3 and 4. The procedure for determining h  then

involves calculating the local values of F’rg , 'rv""‘, and Rey, as

< iy,
Frg = Px:
£ (11-9)
[( 9_4173
.y 2
7%= f‘e ) ) o
Y 8%eAY)
(II-IO)
Eeﬁ";(l"xv} 4kh§-
(tE=11)

where the vapor shear stress ( 'Fv ) is evaluated by the procedures
described on pages 1156-117 of Keference 5. These guantities are

then used to interpolate among the various curves and obtain the value
of h> Finally, the local heat-transfer coefficient is

calculated as,

g Y
| h= 4%, [ma] g h

(11-12)

Fin Efficiency

Sinale~Phase or Single-Component Condensirg Fluid

For a heat-transfer matrix arranged in a single-sandwich

configuration, the fin efficiency is calculated as,

_ tan h("nﬁ-.g)
U™ TGngp)

(1i-13)



where ¥a .is the fin-efficiency parasmeter defined as,
hf\E\,’ 7..__2__.;}:1.__..
'ih—\e‘tg
(11-15)
The expressions used to compute ﬁ?f for double and triple sandwich
arrangements are given in Appendix tl of Reference 1.
Wet Gas

The relations used to compute q{ for the case of

a wet gas are exactly the same as those mentioned above except

that the fin-efficiency parameter is calculated as,

/  zh*
Stk ’é e,t‘f

™
(1E-15)

The quantity, h?* |, is an neffective'! heat-transfer coefficient
defined so as to approximately account for the effect of condensaticn
on the temperature distributions in the fins. The expression for

h* s derived below.

For the case of a condensing wet gas, the heat-transfer

rate ( 3, } to the general surface area, A , can be written

as,

3,:%AJT-TW)+h$?NV

(11-16)

where hlv is the rate of condensation {see Appendix 111)



(H-17)
Substituting Equation 11-17 into Equation 11~16 and using the finite~
difference approximation of the time derivative gives,

H&T [\’Jﬁ 3 _ ’)_,.W'L J7 ( - )

2= {/7 7-7)49(TT Ghx ST

(11-18)
Comparison of Equation 11-18 with the corresponding relation for the
single-phase case,

shows that the effective heat-transfer coefficient is given by the

expression,

#g!g—&i) \”g (7._7")—-\,«@ in\“%

A(?’ 7)

(11-20)



APPENDIX 111

DERIVATION OF TRANSIENT EQUATIONS FOR A WET GAS

In this appendix, the transient dffferential equations for
the case of a condensing wet gas are derived and presented. Ex-
pressions for computing the humidity ( &) ) and derivative of
humidity with respect to fluid temperature*( 360/Q57') are also

given.

Fluid Fnerqy Balance

Considering a general differential element, the energy

balance on the condensing wet gas (r fluid) gives,

2(Wy HoPWoH) [ dy :43(‘“"&“3+w " ) bidy + {5 futal Ty Ty | ddy
36 Lty EE] Ly JTBSY ) -

U ,

T, swry dxdy

T chd - Hy N, [ex=22
{111-1)

The enthalpies of the gas and vapor compaonents, t%a ~and LIV ,

are

H

2 (T T

{111-2)

HV:CF;V (Tl“-TUF’)—rh-{j‘, +CP2 ( DP"' 0)

(111-3)

e,
R



- where Tg is some reference temperature at which both enthal-
pies are defined as being zero. The expression for the condensation

rate, Ny , is obtained from a mass balance as,

AW, Wy,

Ny=""Fg  ~ ox X
(vii-k)
Now, from the definition of abso}ute.hUmidity,
MA,:CU\M%
wy = €0y .
(111-5)
A . W, : , '
ssuming g is approximately constant (that is, the local value
of gas density does not change significantly) we can write
v L ,
99 1738 798 TTTIE TTVTy6
- . (i11-6)
a(qui-f-wVHV)._w B(H%'FCUHV) aH3 o 3H, 4 H __a_(f;)
| X % T ax TP Voax
(11e-7)
Ny =-W, AW e
v I 3¢ + ax X
(re-s)
Substituting Equations |I1t-6 through I111-8 into Equation lli~1 and.

simplifying the resulting expression gives,

JH aHv [_ [ aHq 3Hy
w% 36%' $e0 ._a?t]._ wj[j—,a—x— + &) —— a X L‘X
_+UT.V(Tw"T'r)+U1: $W:?(T~5Mv‘rr) |

C(111-9)



fhé expreséiong fGr fi%- and f{v can be differeﬁfiated'

. to ohtain,
SY- R LAY 39 —- 3 X Y
aHy 2T, My Ty
30 Y ax 7Y ax
, (+11-10)
Then, if we define,
e N
Cpe = Cpat @ cpy
(1ii-11)
the final form of Equat{on 11{-9 is obtained as,

“‘UTP(TW o+ U-;sz,r (Tsw,r"n) ,

(Wgchf) .._( Y F,

(111-12)

wall Enerqy Balance

Energy balances on the separatfng wall and side walls In

contact with the condensing wel gas give the following two expressions,

Yo ) o

— 2 ay =|—?
l’—-x’-y) VR QKL

+ (i H,;w)wwéxc*v (mw) Hew dudy

T

C(111-13)

E aT U [] L) - Cl
| ( s:u.r) S gy dy :(mm-“:-:)(rf”-rswf) +(Hy Hzlsw)N\gSW (fi_’f_..:.y)

Lyly 30 Lxly Lxty
- Wg;w)d H,r_’,gw d Cf ' o
(’-y o X <<y o (re=1l)
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In"these relations, the terms Qﬂwwv,'and'lqvjswafe the condensation

rates on the separating and side walls, respectively,

\ | - | | (H11-15)

In addition, the terms W_&w and Wg ¢, represent the liquid flow
rates along the walls. Using the definitions of enthalpy in Equations

P1t-13 and |11~14 and simplifying the resulting expressions gives,

’ . {':"W a-r“’ - U‘f‘,r (T““Tw)-{- lJ"l'. 5 (TS"TWJ‘{" CP:V(Tr“TDP)-;-h-F DP+ CP.E. (TDP—'T ) NV w
36 e '
A 5T .
(e re) ST Ly
(111-16)
ria BT;w,v .
Cswy FY-ES Uts»«:,v(Tr"‘f'sw,r)'i'E‘p,v(T»“TaP)"'M?,pp*Cf’,e ("fpp“'fm,kﬂ“v,fw

0 Teyw,
'”(“thwcﬁz) “"giﬂl le

(111-17)

A number of reasonable simplifying assumptions can be made
to reduce the complexity of the above relations. First of all, it
is reasonable to assume that there is not a large variation with
distance in either of the two wall temperatures. In addition, it

is likely thzt the liquid flow rates along the walls will be small.

aT\,u aT—S r -
annd(wszcP)e) BXW_,_X should

be negligible compared to the ogker terms in the eguaticns and can be

Therefore, the terms(uh»ucﬁz) :
ignored with little loss in accuracy. An additional assurpticn

which is quite reasonable is that the terms (o, (T Topltcp o (T -T,,) and
cﬁvtnfgp)+¢ﬁ£(fopﬂTswﬂ) are each much smaller than the latent
heat of wvaporizaticn, hf o - With these assumptions, Equaticns

“141-16 and 111-17 reduce to



5 9T i |

'(III—1‘8)
— 3T N '
Cewr _..% = VUT,swr (Tr'“-ﬁswf} + h{},DPNV; 5w

| (111-19)

If we define the fraction of the total condensation rate

T

occurring on the separating wall as Nv,w' then,

(111-20)

(11-21)
An accurate approximation of Nv w can be obtained by assuming that

Ny wo U (T, - T,,) and Ny, sw®Urswi(t, %, ) The term Ny, s
then given by the relation, ‘

g - UT;”‘(Tv-'Tw)
VW UT," (T..-"Tw)‘i‘ UT,SW;"'(TrHTS‘W,P)

(H11-22)
Now with the assumptions listed on page 7 of the main text, the
humidity is a function of fluid temperature only. Therefore, the
derivatives of humidity in the expression for the totai condensation
rate ({Equation |11-B) can be written as,
W _ vl . 3Ty
38 ~ 27y 26
oW __:' ol . 3T,
A x 0Ty ?y

{1i1-23)



The relation for IVQ then becomes
aT, 3T
N :___gpd) W, —F 4 r
‘*’( ?w"“f’%a X
{(111-24)
The above expressions are then used in Equations {11-18 and 11I-19

to obtain the final forms of the transient differential equations for

the walls:

- aTy, : '
Cv 33 = u-;—,r(-r,.—-'rw_)ﬂ—uns (T~ Tw)

=Ny [(h{:? bp Ty )(\’“{} a;; "4 a;i L")]

ey or 550 ) (Wy AT LA

3w ""'a"—'_é“’_ - UT] ng(TrﬁTSPJ,F)-'(]“ﬁVIW)E ’DP c}‘lr b(; + g’ a _l
(111-26)

(111-25)

Evaluation of & and azxy/a'r

The absolute humidity of any mixture can be expressed in

_terms of the partial pressures of the two components as,

we 12
(H11-27)
where %?, is the partial pressure of the vapor component, £ is

the local pressure of the mixture, and My and Mg are the
molecular weights of the vapor and gas components. At all temperatures
below the dew point, the gas is assumed to be saturated. For a saturated

mixiure,

f?>;f6v

(11 1'—28)
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where 76V is the vapor pressure of the vapor compohent evaluated at

the local fluid temperature. 'Equation‘lli-27 then bhecomes,
» My
fJV fﬂ@» J
L) =

? vy
' (t11-29)

For most substances, the vapor-pressure variation with

temperature can be expressed quite accurately over a moderate tempcrature

range as,
| by
Lnlp,)2An &p = 7
(111-30)
or
- L
L =iy, T
=%
_(Il!rS])

- where 61* and bf’ are constants which cen be evaluated locally
from tabulated values of ?Lv “versus T for the vapor
component., _ .

Substituting Equation [11-31 into 111-27 gives the following
expression for &) as a function of fluid temperature,
()
M

W = i

£\ (bp/7)

a}? e -1

(111-32)

This is then differentiated with respect to T to obtain the
final relation for 2&/3T ,

J 5 v
ol

(111-33)
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“For Viiues of fluid temperature. above the dew point, the humidity is
constant (Ew/aTt'O ) and is equal to the inlet value. Below the
dew point, & and ZJOJ/&T are computed by Eguations Hl1-29
and [ 11-33, respectively, using tabulated values of ?évv versus

T to obtain fV and bf-’ |



APPENDIX 1V

FACTORS AFFECTING CHOICE OF TIME [NCREMENT

The size of the time increment used in the finite-difference

sotution of the transient equations at any time @ affects to some

extent the accuracy obtained. Experience has shown that the effect

of AL is moderate and considerable latitude exists in the
choice of the value used. However, in order to achieve reasonable
accuracy, it is desirable to bound AL ; that is, to insure

that the value selected is between calculated minimum and maximum
values. The suggested procedures for computing &&pin and-&gma_x

are presented in this appendix.

Calculation of Minimum Time Increment

Intuitively, one would expect the accuracy of the finite-
difference solutions tc improve as the size-of the time increment is
decreased; that is, ome wuld not expect there to be a limiting
minimum value of A& . However, egamination of the transient
equations involved shows that they are hyperbolic in nature. There-
fore, results obtained using any finite~difference procedure based
on taking incrementa! steps along the time scale and in the physical
flow plane are likely to be somewhat inaccurate for small values of
time; that is, values of g on the order of the dwell times of
the fluids in the heat exchangar.

This aspect of the transient equations can be illustrated
by considering the case of flow through a constant waii temperature

duct. The governing eguation for tnis case is,

2T T
Lol 9T T
v 26 o=

(1v-1)
.where V is the fluid velocity, 2Z& is the distance along the
flow length { WL )}, ard '
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- TE Te)yid = Twall

hia/L)

@«

e

WCP
(1v-2)
This equation has a single characteristic given by
Echaf =v@£}\arr
(1v-3)

The characteristics represent lines in the Z- 8 plane along which
discontinuities in the derivatives of T may exist.
The finite-difference approximations in the selected

solution procedure are roughly equivalent to

!
| T=T 3T
B =R T
Y A# p; x

‘% .—.-(vig +a) T +(7‘5—§)T’

T4 =T _ T+ T+ J T+ T
VN (m&’*’@( )+(VA9)(ML ')

giving a recurrence formula of

'_R-i-OCAE’-
< : R ! /
T = T+ 3% = (Ti+ Ti+y
,L_+l [+ R+aAZ 4 THRIXAZ ( | ) |
2 : - o (1v-h)
~where the subcript ¥ I " refers to equally spaced calculation stations

along the flow length and the term, R , is defined as



d

A=

v%kC

p
Hl

(1v-5)
Equation [V~5 can be written in terms of fhe fluid dwell time
(QQ:=V%AV ) by-recpgnizing that v:lqAQJ . The resulting

expression is then,

: (1y-6)

The guestion is how to select the time increment in order
to achieve optimum accuracy in the numerical solution. We will
consider the simple case where QL= O and choose five equal
spatial increments in the duct. The selected initial and boundary
conditions are

T{or)}=0
T (9,0)=100

In this case, the exact solution for the outlet temperature (7‘5 }

is,

T

OUT:'O for. 9"6”d

We will compare this with the finite-difference solutions for four
values of W : 0.2, 1, 2 and 4. The appropriate recurrence formulas

are obtained from Equaticn V-4 as,



o / ' -
Ty, 0.8 Tih0-09 (T +70) for R=0.2
1 Fy AL (e ) - for R =|
T2y s (Tie1 +T ) ' - for =
— 1 ! ) - R . =
Tip =2 (Tig1 + T) A for Rz 2
.= 2t ! A ' o >
Tea T 5T T (vl + 7)) for R=4
The calculated outlet temperatures are shown plotted in Figure 5
from which it can be observed that R = 1,2, or h give a much better
approximation to the exact solution than & = 0.2. The reason for

this lies in the relationship between the finite-difference net and

the physical characteristics. For small values of R , we have

-3

o4 g

. T Ti+|§‘// 1
AL / : wﬁo‘

<

Ty Tit:

-
=

Physically, the temperature of any point above the characteristic

tine (Z=“49 } has no influence on the temperature at any point on the
characteristic. Yet, the finite-difference formula for small W
weights the temperature T heavily in determining T {4} ;

obviously this must be an inaccurate procedure. For large R .

we have



1
. / i

: / [riﬂ T"““ -
. ! . N
Ti_ ¢ 5 ﬁg

]
Tisi , ki
‘and & similar situation with respect to the influence of Ti on
Ti4.] i+ the inaccuracy is further enhanced by the fact that physically
the temperature T{ also has little influence on T i+1 . For
R = 2, the terperatures which affect Ti4y  in the finite-

difference solution are limited to those which can physically affect

T

i1 . hence, this gives the optimum &ccuracy.

Based on this simple example, it is possible to formulate
some rules for determining @ suitable time increment in the more
complicated problem of a heat exchanger. This problem has two
characteristics (one corresponding to each fluid) and neither is in

general & straight line in the Z-8 plane (that is, the fluid

. velocity varies). Accordingly the minimum time increment should be

based on the side of the heat exchanger which yields the maximum
dwell time of the fluid. In addition, although R = 2 gives the
optimum accuracy for the simple case of an insulated duct, we will
choose R =Féi as being a reasonable compromise between solution
accuracy at small values of &  and calculation time (that is,
number of steps required to cover a given time interval). Therefore,

the expression for Aé’min is obtained from Equation 1V-6 with R =1,

. 2 .
AQmm-max&_@l.-_)r Ba,r 7 (%)S Qa,s]

(1v-7)

n
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It should be noted that based on the results of the simple example
described here, considerable latitude exists in the choice of & &
Therefore, the terms 62%, and ékﬂs need only be determined

very approximately.

Calculation of Maximum Time Increment

Another requirement for accuracy follows from the finite-
difference appraximation to BT/EMP . If this is to be reasonably
accurate, it is essential that T not change much in one time
interval due to normal heat-convection effects; that is, A& should
be chesen such that '

T
'%"'_«'_
' (1v-8)

o

This requirement can be expressed more quaniitatively and used to
generate & simple rule for calculating the maximum time step.

The selected procedure invoives extrapolating the curves
of Tou.T versus & for each side and estimating the value of Af re-
gquired to achieve a certain reference AT in a reasonable number
of time steps {say 10). The outlet position of each fluid is chosen,
since the outlet conditions are of the major interest. A convenient
&&T)ref " to choose for each fluid is the absolute temperature
difference between the two fluids at the outlet of the one being con-
sidered. Based on these considerations, the expression used to

compute Agmax is,

A8y = in E:;gmx,, , Aew_x.s]
(1v-9)

where

- (T "Ts)out,v'
A YR | L

(BT/28)gyrn

(1%-10)



(v=Ts)our s
N7 -

‘Q"Qt‘na){,s = 0.}

{(1y=11)

The terms (&T/zt\é?)ow, and (Ty*Ts)ouT in these relations are obtained
by extrapolating the results of the transiént calculations obtained
at the previous time. The minimum of the two values is taken so as
to insure that the requirement expressed in Equation V-8 is satisfied
._for both fluids.

for the case where the r fluid is a singlé—component con-
densing fluid and is two—phaée at outlet, a di'fferent expression
must be used to compute Agmo\x’r . This is based on the variation

of the exit quality with time and is given by the relation,

0.0}
g =
Al vaaxr (Qy /88)1

(1v-12)

where a reference quality difference of ©-1 has been selected.

- The question arises as to the value of A ¥ to be used
if Agmx‘-’-z-\gmin . In this case, AE=ABmin should
be used since the transport effects (represented roughly by the
characteristic properties) would appear to be the more important in

terms of affecting the accuracy of the soluticns.



APPENDIX V.

DERIVATION OF REDUCED FORMS OF DIFFERENTIAL EQUATIONS

The calculation of the transient performance involves the
simultaneous solution of a set of five differential equations, as -
discussed in the section of this report titled, "'Governing Equations'l,
In performing these calculations, it is more cohvénient to work with
a set of two differential equations, one'for each fluid; this is

done by using a finite-difference representation of the time der-

ivatives,

8T _ T-T1!
08 adf

2Ry _ Xy-X
20 AP

and algebraically reducing the oringal set. In all cases, the

reduced form of the differential equation for the s fluid is,

27 4 PoT, = Qg+ Qsz Tr

& _
(v-1)
The corresponding relation for the r fluid is,
T -
e 4 P, T,=2Q, +Qrz Ts
(v-2)

for cases where the r fluid is single-phase or a wet gas. |If the

r fluid is a single-component condensing fluid, xvgr replaces Ty as

. the unknown quantity in the two-phase region, and the following

expression is used instead of equation V-2:



——— + PT!:- xv’\r = QTP"TQTPZ -TS

(v-3)

This appendix describes the algebraic reducticn of the
set of differential equations and presents the relations defining
the coefficients of the reduced equations{ In addition, the expressions
relating the thfee wall temperatures to the fluid temperatures (Equations
28,.29, and 30) are derived, and the coefficients appearing in them

are defined.

Equation for T

The desired form of the equation for the separating wall is,

3T,

-— | t ! /
T\,\;“"F-w[ Ti+FW2TS+F ﬂTW-{».FW; GI‘L Tr - FW}X_,L —é-“;—-

Wi

(v-b}

For the case where the r fluid is not a wet gés, the
pertinent relation is given by Equation 9. Using the finite-
difference representation of 3Ty /38 , this becomes

%%(fw“'rw'): Ur e (Tr=Tud +Ur s (Ts - Tw)

(v-5)

Defining,
=w_

o TVt Urs

Y
g

I
>

(v-6)



and solving for T, , we cbtain

- - Urs W/ S-AR

(v-7)

the pertinent relation for

When the .r fluid is a wet gas
in finite-difference form this

the separating wall is Equation 18
becomes , o
(gw )(T,-Tw) U e (Tr=Tw) V5 (T5=Tw)
- . &;w a 7 .
—-N\,’ [(h{:% DP r)(w R --Tr )+W’r-§? Lx}}
(v-8)
pafining, _, 30,
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Comparison of Equations V~7 and V~10 with Equation V 4

gives the following general definitions of the coefficients
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when the r fluid is not a wet gas, and '
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when the r fluid is a wet gas.

Eguation for Taw,r

The desired form of the equation for the side wall in contact

with the r fluid is,
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For the case where the r fluid is not a wet gas, the
pertinent relation is Equation 10. With the finite-difference
representation of aTsw,,/ag this becomes,
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-and solving for Tsw,e gives,
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When the r fluid is a wet gas, the relation is given by
‘Eﬁgkjlsiiion 19. Using the finite-difference representation of the time

N dé’rivativas, we obtain _ . 7
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U-sing the definitions of RL . HBL , and RX L (Equation
& y

V-9) and solving for Tswv gives,
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Comparing Equations V-17 and V-19 with Equation V-14, we

arrive at the following general definitions of the coefficients,
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when the r fluid is not & wet gas, and
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in cases where the r fluid is & wet gas.

Equation for ?;VJ,S

The desired form of the equation for the side wall in

contact with the s fluid is,’
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In all cases, the pertinent relation is Egquation Ii1. Using

the finite-ditference representation for bTSMS/aQ - gives,
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and solving for TTg,, s we obtain
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Comparing Equation V=26 with V=23 gives the following definitions

of the coefficients.

Uy, s
Fowsi™ Do 2
sty S
F (CSVU, S/AE)
Swaa DSW <

(v~27)

Equations for r Fluid

Temperature Eqﬁation

For cases where the r fluid is single phase (including
in this category the single-phase regions of a single-component
condensing fluid} or a wet gas, the differential equations for

'Ty (Equations 7 and 17) can be written in the following general

form:
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if the fluid is a wet gas. ‘
Using the finite-difference representation of 3‘5}/39 and
substituting Equations V-4 and V-Th for T, and Tg,,, in
i

Equation V-28 gives the following expression:



g1

ATy
(Wv z()r LX""G:XL) Ix

’,
Ty:Er+UT;rFW2TS

(v-31)
where, '
Uy L= Y v wa*’Uwal’chxL

l
o Wk |
Dy= Tae {8 Fu)+ U e Fawra t %o ),

OC&LE Uty Fow 8L+ Ut swr st &, L

Wore, %
- y Sy
Er"( Py + QL)Tg'f(UTyngij (UTSWFFSWVZ)TSwY

(v-32)

" Comparing Equation V-31 with y-2, we arrive at the following definiticns

of the coefficients,
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Vapor-Quality Fguation

For the case where the r fluid is a single-component con-
densing fluid in the two-phase region, the pertinent relation is
Equation 16. Using the finite-difference representation of ox,, /34

¥

this relation becomes
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Substituting Equations V-4 and V¥-1h (with F'N}g’gj-‘ F"‘\'ﬁ*}l-: SLAJ’E’L:EW’X‘L::O)

for T, and Tow, v and T, =T, in Equation V-3h gives,
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Comparison of Equation Y-%5 with ¥=3 gives the following definitions

of the coefficients,
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Equation for s Fluid

In all cases, the pertinent relation for T is Equation

s
8. Using the finite-difference representation ofa"g/ag and substituting

Equations V-4 and v-23 for T,, and T in Equation 8, we

SW‘S
obtain the following expression:
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Cmnﬁarison of this relation with €quation V-1 yields the following

definitions of the coefficients,
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